众所周知电子器件的工作温度直接决定其使用寿命和稳定性,自动化压铸岛要让PC各部件的工作温度保持在合理的范围内,除了保证PC工作环境的温度在合理范围内之外,还必须要对其进行散热处理。而随着PC计算能力的增强,功耗与散热问题日益成为不容回避的问题。一般说来,PC内的热源大户包括CPU、主板(南桥、北桥及VRM部分)、显卡以及其他部件如硬件、光驱等,它们工作时消耗的电能会有相当一部分转化为热量。尤其对CPU而言,如果用户进行了超频,其内部元件的发热量更是不可小觑,要保证其稳定地工作更必须有效地散热。
热传递的原理与基本方式
学过中学物理的朋友都知道,热传递主要有三种方式:
第一传导:物质本身或当物质与物质接触时,能量的传递就被称为热传导,这是最普遍的一种热传递方式,由能量较低的粒子和能量较高的粒子直接接触碰撞来传递能量。相对而言,热传导方式局限于固体和液体,因为气体的分子构成并不是很紧密,它们之间能量的传递被称为热扩散。
热传导的基本公式为“Q=K×A×ΔT/ΔL”。其中Q代表为热量,也就是热传导所产生或传导的热量;K为材料的热传导系数,热传导系数类似比热,但是又与比热有一些差别,热传导系数与比热成反比,热传导系数越高,其比热的数值也就越低。举例说明,纯铜的热传导系数为396.4,而其比热则为0.39;公式中A代表传热的面积(或是两物体的接触面积)、ΔT代表两端的温度差;ΔL则是两端的距离。因此,从公式我们就可以发现,热量传递的大小同热传导系数、热传热面积成正比,同距离成反比。热传递系数越高、热传递面积越大,传输的距离越短,那么热传导的能量就越高,也就越容易带走热量。
第二对流:对流指的是流体(气体或液体)与固体表面接触,造成流体从固体表面将热带走的热传递方式。
具体应用到实际来看,热对流又有两种不同的情况,即:自然对流和强制对流。自然对流指的是流体运动,成因是温度差,温度高的流体密度较低,因此质量轻,相对就会向上运动。相反地,温度低的流体,密度高,因此向下运动,这种热传递是因为流体受热之后,或者说存在温度差之后,产生了热传递的动力;强制对流则是流体受外在的强制驱动(如风扇带动的空气流动),驱动力向什么地方,流体就向什么地方运动,因此这种热对流更有效率和可指向性。
热对流的公式为“Q=H×A×ΔT”。公式中Q依旧代表热量,也就是热对流所带走的热量;H为热对流系数值,A则代表热对流的有效接触面积;ΔT代表固体表面与区域流体之间的温度差。因此热对流传递中,热量传递的数量同热对流系数、有效接触面积和温度差成正比关系;热对流系数越高、有效接触面积越大、温度差越高,所能带走的热量也就越多。
第三辐射:热辐射是一种可以在没有任何介质的情况下,不需要接触,就能够发生热交换的传递方式,也就是说,热辐射其实就是以波的形式达到热交换的目的。
既然热辐射是通过波来进行传递的,那么势必就会有波长、有频率。不通过介质传递就需要的物体的热吸收率来决定传递的效率了,这里就存在一个热辐射系数,其值介于0~1之间,是属于物体的表面特性,而刚体的热传导系数则是物体的材料特性。一般的热辐射的热传导公式为“Q =E×S×F×Δ(Ta-Tb)”。公式中Q代表热辐射所交换的能力,E是物体表面的热辐射系数。在实际中,当物质为金属且表面光洁的情况下,热辐射系数比较小,而把金属表面进行处理后(比如着色)其表面热辐射系数值就会提升。塑料或非金属类的热辐射系数值大部分都比较高。S是物体的表面积,F则是辐射热交换的角度和表面的函数关系,但这里这个函数比较难以解释。Δ(Ta-Tb)则是表面a的温度同表面b之间的温度差。因此热辐射系数、物体表面积的大小以及温度差之间都存在正比关系。
任何散热器也都会同时使用以上三种热传递方式,只是侧重有所不同。以CPU散热为例,整个热传导过程包括4个环节,第一是CPU ,它是热源产生者,热由CPU工作不断地散发出来;第二是底座和散热片是热的传导体,底座与CPU核心紧密接触的散热片底座以将热以传导的方式传递到散热片;第三是风扇是增加热传导和指向热传导的媒介,到达散热片的热量再通过其他方式如风扇吹动将热量送走;第四是空气,这是热交换的最终流向,要保证有良好的散热,机箱内部就得有充裕空间和科学的风道。
散热方式
一般说来,依照从散热器带走热量的方式,可以将散热器分为主动式散热和被动式散热。所谓的被动式散热,是指通过散热片将热源如CPU产生的热量自然散发到空气中,其散热的效果与散热片大小成正比,但因为是自然散发热量,效果当然大打折扣,常常用在那些对空间没有要求的设备中,或者用于为发热量不大的部件散热,如部分普及型主板在北桥上也采取被动式散热。对于个人使用的PC机来说,绝大多数采取主动式散热方式,主动式散热就是通过风扇等散热设备强迫性地将散热片发出的热量带走,其特点是散热效率高,而且设备体积小。
主动式散热,从散热方式上细分,可以分为风冷散热、液冷散热、热管散热、半导体制冷、化学制冷等等。
风冷
风冷散热是最常见的散热方式,相比较而言,也是较廉价的方式。风冷散热从实质上讲就是使用风扇带走散热器所吸收的热量。具有价格相对较低,安装方便等优点。但对环境依赖比较高,例如气温升高以及超频时其散热性能就会大受影响。
液冷
液冷散热是通过液体在泵的带动下强制循环带走散热器的热量,与风冷相比,具有安静、降温稳定、对环境依赖小等等优点。液冷的价格相对较高,而且安装也相对麻烦一些。同时安装时尽量按照说明书指导的方法安装才能获得非常好的的散热效果。出于成本及易用性的考虑,液冷散热通常采用水做为导热液体,因此液冷散热器也常常被称为水冷散热器。
热管
热管属于一种传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,通过在全封闭真空管内的液体的蒸发与凝结来传递热量,具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可远距离传热、可控制温度等一系列优点,并且由热管组成的换热器具有传热效率高、结构紧凑、流体阻损小等优点。其导热能力已远远超过任何已知金属的导热能力。
半导体制冷
半导体制冷就是利用一种特制的半导体制冷片在通电时产生温差来制冷,只要高温端的热量能有效的散发掉,则低温端就不断的被冷却。在每个半导体颗粒上都产生温差,一个制冷片由几十个这样的颗粒串联而成,从而在制冷片的两个表面形成一个温差。利用这种温差现象,配合风冷/水冷对高温端进行降温,能得到优秀的散热效果。半导体制冷具有制冷温度低、可靠性高等优点,冷面温度可以达到零下10℃以下,但是成本太高,而且可能会因温度过低导致CPU结露造成短路,而且现在半导体制冷片的工艺也不成熟,不够实用。
化学制冷
所谓化学制冷,就是使用一些超低温化学物质,利用它们在融化的时候吸收大量的热量来降低温度。这方面以使用干冰和液氮较为常见。比如使用干冰可以将温度降低到零下20℃以下,还有一些更“变态”的玩家利用液氮将CPU温度降到零下100℃以下(理论上),当然由于价格昂贵和持续时间太短,这个方法多见于实验室或极端的超频爱好者。
决定散热效果的几个方面
第一、材质的选择
热传导系数 (单位: W/mK)
银 429 铜 401
金 317 铝 237
铁 80 铅 34.8
1070型铝合金 226 1050型铝合金 209
6063型铝合金 201 6061型铝合金 155
一般说来,普通风冷散热器自然要选择金属作为散热器的材料。对所选用的材料,希望其同时具有高比热和高热传导系数,从上可以看出,银和铜是最好的导热材料,其次是金和铝。但是金、银太过昂贵,所以,目前散热片主要由铝和铜制成。相比较而言,铜和铝合金二者同时各有其优缺点:铜的导热性好,但价格较贵,加工难度较高,重量过大,且铜制散热器热容量较小,而且容易氧化。另一方面纯铝太软,不能直接使用,都是使用的铝合金才能提供足够的硬度,铝合金的优点是价格低廉,重量轻,但导热性比铜就要差很多。所以在散热器的发展史上也出现了以下几种材质的产品:
纯铝散热器
纯铝散热器是早期最为常见的散热器,其制造工艺简单,成本低,到目前为止,纯铝散热器仍然占据着相当一部分市场。为增加其鳍片的散热面积,纯铝散热器最常用的加工手段是铝挤压技术,而评价一款纯铝散热器的主要指标是散热器底座的厚度和Pin-Fin比。Pin是指散热片的鳍片的高度,Fin是指相邻的两枚鳍片之间的距离。Pin-Fin比是用Pin的高度(不含底座厚度)除以Fin,Pin-Fin 比越大意味着散热器的有效散热面积越大,代表铝挤压技术越先进。
纯铜散热器
铜的热传导系数是铝的1.69倍,所以在其他条件相同的前提下,纯铜散热器能够更快地将热量从热源中带走。不过铜的质地是个问题,很多标榜“纯铜散热器”其实并非是真正的100%的铜。在铜的列表中,含铜量超过99%的被称为无酸素铜,下一个档次的铜为含铜量为85%以下的丹铜。目前市场上大多数的纯铜散热器的含铜量都在介于两者之间。而一些劣质纯铜散热器的含铜量甚至连85%都不到,虽然成本很低,但其热传导能力大大降低,影响了散热性。此外,铜也有明显的缺点,成本高,加工难,散热器质量太大都阻碍了全铜散热片的应用。红铜的硬度不如铝合金AL6063,某些机械加工(如剖沟等)性能不如铝;铜的熔点比铝高很多,不利于挤压成形( Extrusion )等等问题。
铜铝结合技术
在考虑了铜和铝这两种材质各自的缺点后,目前市场部分高端散热器往往采用铜铝结合制造工艺,这些散热片通常都采用铜金属底座,而散热鳍片则采用铝合金,当然,除了铜底,也有散热片使用铜柱等方法,也是相同的原理。凭借较高的导热系数,铜制底面可以快速吸收CPU释放的热量;铝制鳍片可以借助复杂的工艺手段制成最有利于散热的形状,并提供较大的储热空间并快速释放,这在各方面找到了的一个均衡点。
第二、制作工艺
1.底座的制作工艺
要提高散热器底座的热传导能力,选用具有较高的热传导系数的材质是一方面,但另一方面也要解决好热源如CPU与散热器底座的结合的紧密程度问题。根据热传导的定律,在材质固定的前提下,传导能力与接触面积成正比,与接触距离成反比。接触面积越大,就能使热量越快地散发出去,但对CPU来说其Die是固定的,所以结合距离就更显重要。
常用的底面处理工艺包括:
拉丝工艺(研磨)
拉丝工艺也是使用最多的底面处理工艺。拉丝时使用某种表面具有一定粗糙程度及硬度的工具,常见的如砂纸、锉等,对物体处理表面进行单向、反复或旋转的摩擦,借助工具粗糙表面摩擦时的剪削效果去除处理表面的凸出物;当然,磨平凸出物的同时也会在原本平整的表面上造成划痕。故而应采用由粗到细循序渐进的过程,逐渐减小处理表面的粗糙程度。
盘铣工艺(切削)
盘铣工艺是指将散热器底面固定之后通过高速旋转的刀具切割散热器表面,刀具始终在同一平面内旋转,因此切割出来的底面非常平整。与拉丝工艺相同,盘铣工艺使用的刀具越精细,切割出的底面的平整程度越高。盘铣工艺的制造成本较高,但相对拉丝只需要两三道工序,比较省时,并且效果也比较理想。
数控机床
数控机床应用于散热片的底面平整处理主要采用的工艺仍然是铣。但与传统盘铣不同,数控铣床的刀具可以通过单片机精确控制与散热片间的相对距离。刀具接触散热片底面后,两者水平方向相对运动,即可对传统盘铣中刀具空隙留下的未处理部分进行切削,而达到完整的平面效果,不许任何后续处理即可获得镜面一般的效果,平整度可小于0.001mm。
其他工艺
除上述几种外,还有其他对散热器底处理的工艺,如抛光,不过,相对而言,抛光处理更多地是出于散热器美观方面的考虑,对散热器底面平整度没有太大的改善,且处理成本较高。
2.常见的铜铝结合工艺
扦焊
扦焊是采用熔点比母材熔点低的金属材料作为焊料,在低于母材熔点而高于焊料熔点的温度下,利用液态焊料润湿母材,填充接头间隙,然后冷凝形成牢固接合界面的焊接方法。主要工序有:材料前处理、组装、加热焊接、冷却、后处理等工序。常用的扦焊方式是锡扦焊,铝表面在空气中会形成一层非常稳定的氧化层(AL2O3),使铜铝焊接难度较高,这是阻碍焊接的最大因素。必须要将其去除或采用化学方法将其去除后并电镀一层镍或其它容易焊接的金属,这样铜铝才能顺利焊接在一起。散热片上的铜底是进行热的传导,要求的不仅是机械强度,更重要的是焊接的面积要大(焊着率要高),才能有效地提升散热效能,否则不断不会提升散热效能,反而会使其比全铝合金的散热片更加糟糕。
贴片、螺丝锁合
贴片工艺是将薄铜片通过螺丝与铝制底面结合,这样做的主要目的是增加散热器的瞬间吸热能力,延长一部分本身设计成熟的纯铝散热器的生命周期。经过测试发现:在铝散热片底部与铜块之间使用高性能导热介质,施加80Kgf的力压紧后用螺丝将其锁紧,其散热效果与铜铝焊接的效果相当,同样达到了预计的散热效能提升幅度。这种方法较焊接简单, 而且品质稳定,制程简单,投入设备成本较焊接低,不过只是作为改进,所以性能提升不明显。虽然有散热膏填充,铜片与铝底之间的不完全接触仍然是热量传递的最大障碍。
塞铜 嵌铜
塞铜方式主要有两种,一种是将铜片嵌入铝制底板中,常见于用铝挤压工艺制造的散热器中。由于铝制散热器底部的厚度有限,嵌入铜片的体积也受到限制。增加铜片的主要目的是加强散热器的瞬间吸热能力,而且与铝制散热器的接触也很有限,所以大多数情况下,这种铜铝散热器比铝制散热器的效果好不了多少,在接触不良的情况下,甚至为妨碍散热。还有一种是将铜柱嵌入鳍片呈放射状的铝制散热器中。Intel原装散热器就是采用了这样的设计。铜柱的体积较大,与散热器的接触较为充分。采用铜柱后,散热器的热容量和瞬间吸热能力都能增长。这种设计也是目前OEM采用较多的。
3.散热器的加工成型技术
从某些角度看,散热器的加工成型技术决定了散热器的最终性能,也是厂商技术实力的最重要体现。目前散热器的主流成型技术多为如下几类:
铝挤压技术(Extruded)
铝挤压技术简单的说就是将铝锭高温加热至约 520~540℃,在高压下让铝液流经具有沟槽的挤型模具,作出散热片初胚,然再对散热片初胚进行裁剪、剖沟等处理后就做成了我们常见到的散热片。铝挤压技术较易实现,且设备成本相对较低,也使其在前些年的低端市场得到广泛的应用。一般常用的铝挤型材料为 AA6063,其具有良好热传导率(约160~180 W/m.K)与加工性。不过由于受到本身材质的限制散热鳍片的厚度和长度之比不能超过1:18,所以在有限的空间内很难提高散热面积,故铝挤散热片散热效果比较差,很难胜任现今日益攀升的高频率CPU。
铝压铸技术
除铝挤压技术外,另一个常被用来制造散热片的制程方式为铝压铸,通过将铝锭熔解成液态后,填充入金属模型内,利用压铸机直接压铸成型,制成散热片,采用压注法可以将鳍片做成多种立体形状,散热片可依需求作成复杂形状,亦可配合风扇及气流方向作出具有导流效果的散热片,且能做出薄且密的鳍片来增加散热面积,因工艺简单而被广泛采用。一般常用的压铸型铝合金为ADC12,由于压铸成型性良好,适用于做薄铸件,但因热传导率较差(约 96 W/m.K),现在国内多以 AA1070 铝料来做为压铸材料,其热传导率高达 200 W/m.K 左右,具有良好的散热效果。不过,以 AA1070 铝合金压铸散热器存在着一些其自身无法克服的先天不足:
(1)压铸时表面流纹及氧化渣过多,会降低热传效果。
(2)冷却时内部微缩孔偏高,实质热传导率降低(K<200 W/m.K)。
(3)模具易受侵蚀,致寿命较短。
(4)成型性差,不适合薄铸件。
(5)材质较软,容易变型。
接合型制程
这类散热器是先用铝或铜板做成鳍片,之后利用导热膏或焊锡将它结合在具有沟槽的散热底座上。结合型散热器的特点是鳍片突破原有的比例限制,散热效果好,而且还可以选用不同的材质做鳍片。此制程之优点为散热器Pin-Fin比可高达60以上,散热效果佳,且鳍片可选用不同材质制作。其缺点在于利用导热膏和焊锡接结合的鳍片与底座之间会存在介面阻抗问题,从而影响散热,为了改善这些缺点,散热器领域又运用了2种新技术。
首先是插齿技术,它是利用60吨以上的压力,把铝片结合在铜片的基座中,并且铝和铜之间没有使用任何介质,从微观上看铝和铜的原子在某种程度上相互连接,从而彻底避免了传统的铜铝结合产生介面热阻的弊端,大大提高了产品的热传到能力。
其次是回流焊接技术,传统的接合型散热片最大的问题是介面阻抗问题,而回流焊接技术就是对这一问题的改进。其实,回流焊接和传统接合型散热片的工序几乎相同,只是使用了一个特殊的回焊炉,它可以精确的对焊接的温度和时间参数进行设定,焊料采用用铅锡合金,使焊接和被焊接的金属得到充分接触,从而避免了漏焊空焊,确保了鳍片和底座的连接尽可能紧密,最大限度降低介面热阻,又可以控制每一个焊点的焊铜融化时间和融化温度,保证所有焊点的均匀,不过这个特殊的回焊炉价格很贵,主板厂商用的比较多,而散热器厂商则很少采用。一般说来,采取这种工艺的散热器多用于高端,价格较为昂贵。
可挠性制程
可挠性制程通过先将铜或铝的薄板,以成型机折成一体成型的鳍片,然后用穿刺模将上下底板固定,再利用高周波金属熔接机,与加工过的底座焊接成一体,由于制程为连续接合,适合做高厚长比的散热片,且因鳍片为一体成型,利于热传导的连续性,鳍片厚度仅有0.1mm,可大大降低材料的需求,并在散热片容许重量内得到最大热传面积。为达到大量生产,并克服材质接合时之接口阻抗,制程部份采上下底板同时送料,自动化一贯制程,上下底板接合采高周波熔焊接合,即材料熔合来防止接口阻抗的产生,以建立高强度、紧密排列间距的散热片。由于制程连续,故能大量生产,且由于重量大幅减轻,效能提升,所以能增加热传效率。
锻造制程
锻造工艺就是将铝块加热后将铝块加热至降伏点,利用高压充满模具内而形成的,它的优点是鳍片高度可以达到50mm以上,厚度1mm以下,能够在相同的体积内得到最大的散热面积,而且锻造容易得到很好的尺寸精度和表面光洁度。但锻造时,由于冷却塑性流变时会有颈缩现象,使散热片易有厚薄、高度不均的情况产生,进而影响散热效率,因金属的塑性低,变形时易产生开裂,变形抗力大,需要大吨位(500吨以上)的锻压机械,也正因为设备和模具的高昂费用而导致产品成本极高。且因设备及模具费用高昂,除非大量生产否则成本过高。
刨床、切削工艺
刨床式制程即先以挤型方式做出带有凹槽之长条状的胚子,再使用特殊的刀具,将初胚削出一层层的鳍片出来,其散热鳍片的厚度可薄至 0.5mm 以下,且鳍片与底板是一体成型,从而避免接口阻抗这一多材质结合时的大麻烦。其缺点则是,在成型的过程中,由于材料应力集中,鳍片与底板接合处会产生肉眼不易察觉的裂缝,进而影响散热器的散热性能,且由于废料、量产能力及次品率等问题,使得制作成本较高。切削技术则是对一整块金属进行一次性切削,形成很薄、很密散热鳍片,从而有效地增加了散热面积。由于要进行切削,金属的硬度不能太高,所以铝的含量会比普通铝合金散热片稍高,成型后的散热器质量很轻,安装方便。这种技术虽然原料成本与普通压铸成型的散热器相当,但工艺要求高,加工困难,因此产品并不多。
精密切割技术
精密切割技术是将一块整体的型材(铝/铜),根据需要用特殊的切割机床在基座上切割出指定间距的散热鳍片。相比传统的铝挤压工艺,精密切割技术可以在单位体积内切割出更大的散热面积(增加50%以上)。精密切割技术切割出的散热片表面会形成粗颗粒,这种粗颗粒可以使散热片和空气的接触面更大,提升散热效率。精密切割的最大优势是散热器属于整体切割成型,散热鳍片和散热底座结合为一体,精密切割技术制造的散热片不存在介面热阻的问题,热传导效率非常高。
扩展结合工艺
扩展结合工艺跟插齿工艺有些类似,先将铝或铜板做成鳍片,在高温下将鳍片插入带沟槽的散热器底部,不过扩展结合工艺在插入鳍片的同时还要塞入一个短铜片以产生过盈连接并提高散热鳍片与散热器底部的连接面积,来减小接触热阻,该工艺的接触热阻非常不错,该工艺已经被不少日系厂商所采用。
折叶(Fold FIN)技术
Fold FIN(金属折叶)技术在原理上与Skiving技术类似,是将单片的鳍片排列在特殊材料焊接的散热片底板上,由于鳍片可以达到很薄,鳍片间距也非常大,在单位面积可以使有效散热面积倍增,从而大大提高散热效果。一般说来,折叶工艺并非一项单独的制造工艺,它往往伴随回流焊接工艺。使用折叶工艺可以更好的控制焊接的精度,同时提高鳍片的强度。折叶后鳍片之间相互连接,还可以改善热量传递。Fold FIN技术也很复杂,一般厂家很难保证金属折叶和底部接触紧密,如果这点做得不好,散热效果会大打折扣。
压固法
将众多的铜片或铝片叠加起来,将其中一个侧面加压并抛光与CPU核心接触,另一侧面伸展开来作为散热片的鳍片。压固法制作的散热器其特点是鳍片数量可以做的很多,而且不需要很高的工艺就能保证每个鳍片都能与CPU核心保持良好的接触而各个鳍片之间也通过压固的方式有着紧密的接触,彼此之间的热量传导损失也会明显降低,因此这种散热器的散热效果往往不错。
第三、风扇
对风冷散热器而言,最终都要通过风扇的强制对流来加快热量的散发,因此一款风扇的好坏,对整个散热效果起到了决定性的作用。配备一个性能优良的CPU风扇也是保证整部电脑顺利运转的关键因素之一。决定风扇最终散热性能的因素很多,主要包括风量、转速、噪音、使用寿命长短、采用何种扇叶轴承等。
1.风量
风量是指风冷散热器风扇每分钟排出或纳入的空气总体积,如果按立方英尺来计算,单位就是CFM;如果按立方米来算,就是CMM。散热器产品经常使用的风量单位是CFM(约为0.028立方米/分钟)。50x50x10mm CPU风扇一般会达到10 CFM,60x60x25mm风扇通常能达到20-30的CFM。在散热片材质相同的情况下,风量是衡量风冷散热器散热能力的最重要的指标。显然,风量越大的散热器其散热能力也越高。这是因为空气的热容比率是一定的,更大的风量,也就是单位时间内更多的空气能带走更多的热量。当然,同样风量的情况下散热效果和风的流动方式有关。
风量和风压
风量和风压是两个相对的概念。一般来说,在厂商节约成本的考量下,要设计风扇的风量大,就要牺牲一些风压。如果风扇可以带动大量的空气流动,但风压小,风就吹不到散热器的底部(这就是为什么一些风扇转速很高,风量很大,但就是散热效果不好的原因),相反地,风压大则往往意味着风量就小,没有足够的冷空气与散热片进行热交换,也会造成散热效果不好。一般铝质鳍片的散热片要求风扇的风压足够大,而铜质鳍片的散热片则要求风扇的风量足够大;鳍片较密的散热片相比鳍片较疏的散热片,需要更大风压的风扇,否则空气在鳍片间流动不畅,散热效果会大打折扣。所以说不同的散热器,厂商会根据需要配合适当风量、风压的风扇,而并不是单一追求大风量或者高风压的风扇。
风扇转速
风扇转速是指风扇扇叶每分钟旋转的次数,单位是rpm。风扇转速由电机内线圈的匝数、工作电压、风扇扇叶的数量、倾角、高度、直径和轴承系统共同决定。转速和风扇质量没有必然的联系。风扇的转速可以通过内部的转速信号进行测量,也可以通过外部进行测量(外部测量是用其它仪器看风扇转的有多快,内部测量则直接可以到BIOS里看,也可以通过软件看。内部测量相对来说误差大一些)。随着应用情况与环境温度的变化,有时需要不同转速风扇来满足需求。一些厂商特意设计出可调节风扇转速的散热器,分手动和自动两种。手动的主要是让用户可以在冬天使用低转速获得低噪音,夏天时使用高转速获得好的散热效果。自动类调温散热器一般带有一个温控感应器,能够根据当前的工作温度(如散热片的温度)自动控制风扇的转速,温度高则提高转速,温度低则降低转速,以达到一个动态的平衡,从而让风噪与散热效果保持一个非常好的的结合点。
2.风扇噪音
除了散热效果之外,风扇的工作噪音也是人们普遍关注的问题。风扇噪音是风扇工作时产生杂音的大小,受多方面因素影响,单位为分贝(dB)。测量风扇的噪声时需要在噪声小于17dB的消音室中进行,距离风扇一米,并沿风扇转轴的方向对准风扇的进气口,采用A加权的方式进行测量。风扇噪声的频谱特性也很重要,因此还需要用频谱仪记录风扇的噪声频率分布情况,一般要求风扇的噪声要尽量的小,而且不能存在异音。风扇噪音与摩擦力、空气流动有关。风扇转速越高、风量越大,造成的噪音也会越大,另外风扇自身的震动也是不可忽视的因素。当然高品质的风扇的自身震动会很小,但前面两个者却是难以克服的。要解决这个问题,我们可以尝试使用尺寸较大的风扇。应在在风量相同的情况下,大风扇在较低转速时的工作噪声要小于小风扇在高转速时的工作噪声。另外一个我们容易忽略的因素是风扇的轴承。由于风扇高速转动时转轴和轴承之间要摩擦碰撞,所以也是风扇噪声的一个主要来源。
风扇噪音的来源有:
(1)振动
假如风扇转子转动时转子的物理质心与转轴惯性中心不在同一轴上,便会造成转子的不平衡。转子的物理质心与转轴惯性中心的最近距离称为偏心距,转子不不衡造成偏心距,当转子转动时由于离心力的作用产生一作用力于转轴支架而形成振动,且振动经由基路径传递到机械各部份。
(2)风噪
风扇工作时,由于叶片周期性地承受出口不均匀气流的脉动力作用,产生噪声;另一方面,由于叶片本身及叶片上压力的不均匀分布,转动时对周围气体及零件的扰动也构成旋转噪声;此外由于气体流经叶片时产生湍流附层面、旋涡及旋涡脱离,引起叶片上压力分布的脉动而产生涡流噪声。这三种原因所引起的噪音可以综合性地称为“切风噪音”,一般风量风压大的风扇,其切风噪声也较大。
(3)异音
风噪听起来只有单纯的风声,而异音则不同,风扇运转时,除风声外,若还有其它声音发出,即可判断风扇出现了异音。异音可能因轴承内有异物或变形,以及组装不当而出现碰撞,或电机绕组缠绕不均,造成松脱,都可能产生异音。
3.风扇的使用寿命
风扇的使用寿命是指散热器产品正常工作的无故障工作时间,优质产品的使用寿命一般都能达到几万小时。在价格和性能差不多的情况下,选择使用寿命长的产品显然更能保护我们的投资。风扇的寿命由:电机寿命、使用环境、电力供应等各方面因素所组成。
4.散热风扇的送风形式
轴流风机
最广泛的形式就是用轴流风机向下吹风,之所以这么流行是因为综合效果好且成本低廉。此外,还有将轴流风机的方向反过来,变成向上抽风的形式,这种方式最近似乎变得越来越常见。两种送风形式的差别在于气流形式的不同,鼓风时产生的是紊流,风压大但容易受到阻力损失;抽风时产生的是层流,风压小但气流稳定。理论上说,紊流的换热效率比层流大得多,因此才成为主流设计形式。但是气流的运动与散热片也有直接关系。在某些散热片设计中(比如过于紧密的鳍片),气流受散热片阻碍非常大,此时采用抽风可能会有更好的效果。至于采用侧面鼓风的设计,通常不会和顶部鼓风的效果有什么差别。而比较有效的改进方法是建立CPU专用的散热风道,这样便不会受到CPU附近热空气的影响,相当于降低了环境温度。轴流风机虽然应用广泛,但是也存在固有的缺陷。轴流风机受电机位置的阻挡,气流不能流畅通过鼓风区域的中部,这称为“死区”。而在典型的散热片上,恰恰中部鳍片的温度最高。由于存在这种矛盾,采用轴流风机时,散热片的散热效果并不充分。
离心风机
离心风机是与轴流风机完全不同鼓风形式,也逐渐开始使用在CPU散热当中,通常被电脑用户称为“涡轮风扇”。这种风扇的优越之处在于很好地解决了“死区”问题。离心风扇与传统风扇的不同之处是其叶片旋转是在垂直的平面内进行的,进风口位于风扇的侧面。散热器底面接收到的气流分布较均匀。离心风机的鼓风方向上没有障碍物,所以在各个位置都有同样的气流。同时它的风压和风量的调节范围也更大,转速控制的效果更好。负面的影响和大功率轴流风机一样——价格高、噪音大。
其他改进风道的设计
另外一种解决风力盲区的办法是改变风扇的出风方向。传统的散热器安装方式是气流朝下,即垂直于CPU。改进风道设计之后,风扇改为侧向吹风,让气流的方向平行于CPU。
侧向吹风的首要好处是彻底解决风力盲区,因为气流是平行通过散热鳍片的,气流截面的四条边上的气流速度最快,而CPU的发热点正好位于一条边上。这样CPU 散热底座吸收的热量可以被及时带走。另外一个好处是没有反弹的风压(通常向下吹风时,一部分气流冲至散热底面并反弹,这会影响散热器内的气流运动方向,使的热交换的效率受到损失)。热交换效率要高于向下吹风。
4.风扇的叶片
散热器风扇的效能主要取决于:风扇扇叶直径和轴向长度;风扇的转速;扇叶的形状等因素。CPU风扇的叶片通常在6片到12片之间。一般说来,叶片数量较少的容易产生较大的风压,但运转噪音也较大;而叶片数量较多的则恰恰相反。
叶片形状
有镰刀型、梯形和AVC专利的折缘型等。相对来说,镰刀型扇叶运转时比较平稳安静,但所能产生的风压也较小;梯形扇叶容易产生较大风压,但噪音也较大。折缘型是最优秀的设计,在保持低噪音的同时能产生较大的风压,但目前仅用于AVC自己的产品中。目前见得较多的是镰刀型的设计。设计优秀的扇叶,能在不高的风扇转速下产生输出较大的风量和风压,同时也不会产生太大的风噪声。除了形状以外,叶片倾斜的角度也很重要,要配合电机的特性和散热片的需要来设计。否则,单纯追求叶片倾角大,可能会出现风噪大风力小的情况。
涡轮风扇:
涡轮风扇可以消除立轴式风扇轴心部分的风力盲区,使风力更加均匀,散热效率更高。
5.风扇的轴承
好的风扇,除了其风量大和风压高之外,自身的可靠性是相当的重要,其中,风扇使用的轴承起着非常重要的作用。一般高速风扇使用滚珠轴承(ball bearing),而低速风扇则使用成本较低廉的自润轴承(sleeve bearing)。每个风扇都需要两个轴承,一些风扇上标着"BS"的字样,是单滚珠式轴承,BS的意思是"1 ball + 1 sleeve",依然带有自润轴承的成分。比BS更高级的是双滚珠式轴承,即Two Balls。下面将对各种轴承形式加以说明。
含油轴承
含油轴承是使用滑动摩擦的套筒轴承,使用润滑油作为润滑剂和减阻剂,初期使用时运行噪音低,制造成本也低,但是这种轴承磨损严重,寿命较滚珠轴承有很大差距。而且这种轴承使用时间一长,由于油封的原因(电脑散热器产品都不可能使用高档油封,一般也就是普通的纸油封),润滑油会逐渐挥发,而且灰尘也会进入轴承,从而引起风扇转速变慢,噪音增大等问题,严重的还会因为轴承磨损造成风扇偏心引发剧烈震动。出现这些现象,要么打开油封加油,要么就只有淘汰另购新风扇。
滚珠轴承
含油轴承由于使用周期较短,轴承内部的油控直接影响运转时噪音大小,所以越来越被各知名大厂所摒弃。双滚珠轴承现在被业界广泛看好,成为高品质散热器风扇的首选,运转稳定性无出其右,但价格也较高。而作为物美价廉的选择,各大厂商的折衷方案就是采用单滚珠轴承。
单滚珠轴承
单滚珠轴承是对传统油封轴承的改进。它的转子与定子之间用滚珠进行润滑,并配以润滑油。它克服了油封轴承寿命短,运行不稳定的毛病,而成本上升极为有限。单滚珠轴承吸收了油封轴承和双滚珠轴承的优点。将轴承的使用寿命提升到了40,000小时,加入滚珠之后,运行噪声有所增大,但仍小于双滚珠轴承。
双滚珠轴承
双滚珠轴承属于比较高档的轴承。轴承中有数颗微小钢珠围绕轴心,当扇页或轴心转动时,钢珠即跟着转动。因为都是球体,所以摩擦力较小,且不存在漏油的问题。双滚珠风扇优点是寿命较长,大约在50000 ~100000小时;抗老化性能好,适合转速较高的风扇。双滚珠轴承的缺点是制造成本高,并且在同样的转速水平下噪音最大(因为滚珠轴承摩擦点增加了2 倍)。双滚珠风轴承和液压轴承的封闭性较好,尤其是双滚珠轴承。双滚珠轴承被整个嵌在风扇中,转动部分没有与外界直接接触。在密封的环境中,轴承的工作环境比较稳定。因此5000转级别的大口径风扇几乎都使用双滚珠轴承。而液压轴承由于具备独特的还回式油路,所以润滑油泄露的可能性较小。
来福轴承
来福轴承(Rifle Bearing)技术的代表厂商是CoolerMaster,CM已经将旗下的大部分传统油封轴承风扇升级到来福轴承。作为传统油封轴承的改进,来福轴承采用耐磨材料制成高含油中空轴承,减小了轴承与轴芯之间摩擦力,来福轴承还带有反向螺旋槽及挡油槽的轴芯,在风扇运转时含油将形成反向回游,从而避免含油流失,因此提升了轴承寿命。来福轴承风扇通过采用以上结构及零件,使得含油及保油能力大幅提升,并降低了噪音。
HYPRO轴承
Hypro 轴承之名来源于HY(Hydrodynamic wave,流体力学波)PRO(Oil protection system,油护系统),系知名散热器及风扇设计制造厂家ADDA的专利产品,同是在传统含油轴承基础之上进行多项改进而成。Hypro与液压轴承可谓殊途同归,两种设计各自采用了一些独到的改进措施,但精髓同为循环油路系统,各方面的表现也基本相当。通常产品寿命可达50000小时以上。
液压轴承
液压轴承是在油封轴承的基础上改进而来的。液压轴承拥有比油封轴承更大的储油空间,并有独特的环回式供油回路。液压轴承风扇的工作噪音又明显的降低,使用寿命也非常长,可达到40000小时。但并非所有的AVC散热器都采用液压轴承风扇。由此可见,液压轴承实质上仍然是一种油封轴承。但这种经过了改进,寿命比普通油封轴承大大延长了,并且继承了油封轴承的优点——运行噪音小。
纳米轴承
传统油封轴承风扇在使用过程中磨损比较严重,长时间使用时的可靠性较低。纳米轴承有效的克服了这个问题:陶瓷轴承技术采用了纳米级高分子材料与特殊添加剂充分融合,轴承核心全面采用纳米级的氧化锆粉,使用冲模及烧结工艺制成,晶体颗粒由过去的60um下降到了 0.3um,具有坚固、光滑、耐磨等特性。纳米陶瓷轴承(NCB)具有很强的耐高温能力,不易挥发,这大大延长了风扇的使用寿命,纳米轴承的性质与陶瓷类似,越磨越光滑。据测试,采用纳米陶瓷轴承(NCB)的风扇平均使用寿命都在15万小时以上。
第四、热管
热管是目前散热器市场上的主流技术,我们将在下文对其进行深入介绍。